翻訳と辞書
Words near each other
・ Feyenoord Academy
・ Feyenoord Academy (Varkenoord)
・ Feyenoord Jubilee Tournament
・ Feyenoord Tournament
・ Feyer
・ Feyerabend
・ Feyerharm Knoll
・ Feyerick
・ Feyhaman Duran
・ Feyisa Lilesa
・ Feyli
・ Feyli Kurds
・ Feylinia
・ Feynman (disambiguation)
・ Feynman checkerboard
Feynman diagram
・ Feynman Long Division Puzzle
・ Feynman parametrization
・ Feynman point
・ Feynman slash notation
・ Feynman sprinkler
・ Feynman's Lost Lecture
・ Feynman–Kac formula
・ Feyntje Steenkiste
・ Feynuus FC
・ Feyr
・ Feyrouz
・ Feyrouz (actress)
・ Feys
・ Feyse Tadese


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Feynman diagram : ウィキペディア英語版
Feynman diagram


In theoretical physics, Feynman diagrams are pictorial representations of the mathematical expressions describing the behavior of subatomic particles. The scheme is named for its inventor, American physicist Richard Feynman, and was first introduced in 1948. The interaction of sub-atomic particles can be complex and difficult to understand intuitively. Feynman diagrams give a simple visualization of what would otherwise be a rather arcane and abstract formula. As David Kaiser writes, "since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations", and as such "Feynman diagrams have revolutionized nearly every aspect of theoretical physics".〔("Physics and Feynman's Diagrams" by David Kaiser, ''American Scientist'', Volume 93, p. 156 )〕 While the diagrams are applied primarily to quantum field theory, they can also be used in other fields, such as solid-state theory.
Feynman used Ernst Stueckelberg's interpretation of the positron as if it were an electron moving backward in time. Thus, antiparticles are represented as moving backward along the time axis in Feynman diagrams.
The calculation of probability amplitudes in theoretical particle physics requires the use of rather large and complicated integrals over a large number of variables. These integrals do, however, have a regular structure, and may be represented graphically as Feynman diagrams. A Feynman diagram is a contribution of a particular class of particle paths, which join and split as described by the diagram. More precisely, and technically, a Feynman diagram is a graphical representation of a perturbative contribution to the transition amplitude or correlation function of a quantum mechanical or statistical field theory. Within the canonical formulation of quantum field theory, a Feynman diagram represents a term in the Wick's expansion of the perturbative S-matrix. Alternatively, the path integral formulation of quantum field theory represents the transition amplitude as a weighted sum of all possible histories of the system from the initial to the final state, in terms of either particles or fields. The transition amplitude is then given as the matrix element of the S-matrix between the initial and the final states of the quantum system.
== Motivation and history ==

When calculating scattering cross-sections in particle physics, the interaction between particles can be described by starting from a free field that describes the incoming and outgoing particles, and including an interaction Hamiltonian to describe how the particles deflect one another. The amplitude for scattering is the sum of each possible interaction history over all possible intermediate particle states. The number of times the interaction Hamiltonian acts is the order of the perturbation expansion, and the time-dependent perturbation theory for fields is known as the Dyson series. When the intermediate states at intermediate times are energy eigenstates (collections of particles with a definite momentum) the series is called old-fashioned perturbation theory.
The Dyson series can be alternatively rewritten as a sum over Feynman diagrams, where at each interaction vertex both the energy and momentum are conserved, but where the length of the energy momentum four vector is not equal to the mass. The Feynman diagrams are much easier to keep track of than old-fashioned terms, because the old-fashioned way treats the particle and antiparticle contributions as separate. Each Feynman diagram is the sum of exponentially many old-fashioned terms, because each internal line can separately represent either a particle or an antiparticle. In a non-relativistic theory, there are no antiparticles and there is no doubling, so each Feynman diagram includes only one term.
Feynman gave a prescription for calculating the amplitude for any given diagram from a field theory Lagrangian—the Feynman rules. Each internal line corresponds to a factor of the corresponding virtual particle's propagator; each vertex where lines meet gives a factor derived from an interaction term in the Lagrangian, and incoming and outgoing lines carry an energy, momentum, and spin.
In addition to their value as a mathematical tool, Feynman diagrams provide deep physical insight into the nature of particle interactions. Particles interact in every way available; in fact, intermediate virtual particles are allowed to propagate faster than light. The probability of each final state is then obtained by summing over all such possibilities. This is closely tied to the functional integral formulation of quantum mechanics, also invented by Feynman–see path integral formulation.
The naïve application of such calculations often produces diagrams whose amplitudes are infinite, because the short-distance particle interactions require a careful limiting procedure, to include particle self-interactions. The technique of renormalization, suggested by Ernst Stueckelberg and Hans Bethe and implemented by Dyson, Feynman, Schwinger, and Tomonaga compensates for this effect and eliminates the troublesome infinities. After renormalization, calculations using Feynman diagrams match experimental results with very high accuracy.
Feynman diagram and path integral methods are also used in statistical mechanics and can even be applied to classical mechanics.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Feynman diagram」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.